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Abstract. The canonical undestanding of stellar convection has recently been put under doubt due to helio-
seismic results and global 3D convection simulations. This “convective conundrum” is manifested by much
higher velocity amplitudes in simulations at large scales in comparison to helioseismic results, and the dif-
ficulty in reproducing the solar differential rotation and dynamo with global 3D simulations. Here some
aspects of this conundrum are discussed from the viewpoint of hydrodynamic Cartesian 3D simulations
targeted at testing the rotational influence and surface forcing on deep convection. More specifically, the
dominant scale of convection and the depths of the convection zone and the weakly subadiabatic – yet
convecting – Deardorff zone are discussed in detail.
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1. Introduction
The solar convective envelope rotates differentially, such that the rotation rate at the equator

is about 40 per cent faster than at near the poles. Furthermore, helioseismology has revealed
that the angular velocity Ω increases (decreases) with radius near the equator (high latitudes),
with narrow shear layers at the base and near the surface of the convection zone (e.g. Thompson
et al. 2003). This large-scale phenomenon is one of the principal observations that global 3D
simulations seek to reproduce. Early 3D simulations of the late 1970s and early 1980s were
able to capture this (e.g. Gilman 1977), although dynamo cycles in those simulations did not
match that of the Sun (e.g. Gilman 1983; Glatzmaier 1985). However, it took another two
decades for such simulations to become more mainstream (e.g. Brun et al. 2004; Ghizaru et al.
2010; Brown et al. 2011; Käpylä et al. 2012); see also Käpylä et al. (2023) for a recent review.
Soon thereafter it was realized that obtaining solar-like differential rotation (fast equator, slow
poles) with simulations with the nominal solar rotation rate and luminosity is highly non-trivial
(e.g. Gastine et al. 2014; Käpylä et al. 2014; Fan and Fang 2014; O’Mara et al. 2016). This
is thought to be due to too weak rotational influence on the dominant convective scales, or
equivalently, a too low Coriolis (inverse Rossby) number.

At the same time, efforts were made to study the velocity amplitudes in the Sun using helio-
seismology (Hanasoge et al. 2010, 2012). These studies led to the realization that convective
amplitudes at horizontal scales of the order of hundreds of Mm in the Sun appear to be sev-
eral orders of magnitude weaker than in the global simulations, and that the velocity power
spectrum in the Sun peaks at supergranular scale of 20-30 Mm. While the difference between
helioseismic and simulation results has reduced somewhat in the meantime, a large discrep-
ancy remains (e.g. Proxauf 2021). Adding to the puzzle are the results of Greer et al. (2015)
from a ring-diagram analysis that shows high velocity amplitudes in the near-surface shear
layer of the Sun consistent with global 3D convection simulations.

Several physical processes have been suggested as possible solutions of the convective
conundrum. Rotationally constrained convection in the deep parts of the convection zone is
one such possibility (Featherstone and Hindman 2016; Vasil et al. 2021). Linear stability anal-
ysis and non-linear simulations of convection indicate that the convective scale decreases with
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rotation. Given that the velocity power spectrum peaks at the supergranular scale in the Sun,
it is has been conjectured that this scale coincides with the largest convectively driven scale
in the deep convection zone. The question if convection in the Sun is indeed sufficiently con-
strained by rotation was studied systematically in Käpylä (2023a). These results are reviewed
in more detail below.

Another possibility is that the solar convection zone is in fact largely subadiabatic, that is,
the thermal stratification is formally weakly Schwarzschild stable. This can be enabled by
plumes originating near the surface that transport cool low entropy material deep into the
interior far beyond the formally unstable layer. This is related to the idea that convection
in the Sun is driven by the cooling at the surface rather than by a superadiabatic tempera-
ture gradient throughout the convection zone (Stein and Nordlund 1989; Spruit 1997). Such
non-local driving of convection due to surface cooling has been dubbed “entropy rain” (e.g.
Brandenburg 2016). The convective flux in the stably stratified, but convecting, layer is car-
ried by a counter-gradient term proportional to the variance of entropy fluctuations (Deardorff
1961, 1966). Hence this layer is referred to as the Deardorff zone. Simulations of overshooting
convection routinely capture such subadiabatic layers if the transition between the radiative and
convective regions is smooth enough (e.g. Roxburgh and Simmons 1993; Tremblay et al. 2015;
Käpylä et al. 2017; Hotta 2017). Most of the previous works considered non-rotating cases,
whereas here recent results of Käpylä (2023a), where the effects of rotation were included, are
discussed.

Finally, the strength of the surface forcing depends on the physics near the surface of the star.
In real stellar convection zones the density drops vertigineously near the surface and this cannot
be directly reproduced in numerical simulations (e.g. Kupka and Muthsam 2017; Käpylä et al.
2023). Here preliminary results from an effort to study the effects of surface forcing by varying
the (imposed) surperadiabatic temperature gradient at the surface are discussed based on earlier
models presented in Käpylä et al. (2017). The novelty of these simulations is that they are
constructed in such a way that the depth and structure of the convection zone are self-consistent
results of the models instead of being fixed from the outset.

2. The model
The set-up is the same as in Käpylä (2019), Käpylä (2021), and Käpylä (2023a), and the

PENCIL CODE (Pencil Code Collaboration et al. 2021) was used to make the simulations. The
simulation domain is a rectangular box with dimensions (Lx, Ly, Lz) = (4, 4, 1.5)d, where d is
the depth of the initially isentropic layer which is situated between 0 ≤ z/d ≤ 1. Initially this
layer is sandwiched between a radiative layer with polytropic index n = 3.25 (−0.45 ≤ z/d <
0) and an isothermal layer (1 < z/d ≤ 1.05). The equations for compressible hydrodynamics
are solved:

D ln ρ

Dt
= −∇∇∇ ··· uuu, (1)

Duuu
Dt

= ggg − 1
ρ
(∇∇∇p − ∇∇∇ ··· 2νρS)− 2ΩΩΩ × uuu, (2)

T
Ds
Dt

= − 1
ρ
[∇∇∇ ··· (FFF rad + FFFSGS)−C ] + 2νS2, (3)

where D/Dt = ∂/∂ t + uuu ··· ∇∇∇ is the advective derivative, ρ is the density, uuu is the velocity,
ggg =−gêeez with g > 0 is the acceleration due to gravity where êeez is the unit vector along the
vertical (z) direction, p is the gas pressure, ν is the viscosity, S is the traceless rate-of-strain
tensor, ΩΩΩ = Ωêeez is the rotation vector, T is the temperature, and s is the specific entropy. FFF rad =
−K∇∇∇T is the radiative flux where K = K0ρ−2T 6.5 is the heat conductivity following Kramers
opacity law, and FFFSGS =−χSGSρT ∇∇∇s′ is the subgrid-scale (SGS) entropy flux, where χSGS is
a constant SGS diffusivity and s′ = s − s is the deviation of the entropy from its horizontally
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averaged profile which is denoted by the overbar. The gas obeys the ideal gas equation p =
RρT , where R = cP − cV is the gas constant and where cP and cV are the specific heats in
constant pressure and volume, respectively. Finally, C describes cooling near the surface.

In Käpylä (2023a) it was shown that a Coriolis number based on a hypothetical velocity
u⋆ = (Ftot/ρ)1/3 is equivalent to

CoF = 2ΩHp

(
ρ

Ftot

)1/3

= (Ra⋆F)
−1/3, (4)

where Ftot is the total energy flux, Hp = (d ln p/dz)−1 is the pressure scale height, and

Ra⋆F =
gFtot

8cPρT Ω3H2 =
Ftot

8ρΩ3H3
p
, (5)

is the flux-based diffusion-free modified Rayleigh number (e.g. Christensen 2002), where the
length scale H was chosen such that H = cPT/g = Hp, where Hp is taken at the base of the
convection zone. The advantage of CoF is that it does not depend on any dynamical velocity
or length scale and it can be computed using observables (Ω, Ftot) and quantities from stellar
structure models (ρ, Hp); see also the discussion in Käpylä (2023b). Further system parameters
include the Taylor number Ta = 4Ω2d4/ν2, and the Prandtl number related to the SGS diffu-
sivity PrSGS = ν/χSGS. The energy flux is measured by the dimensionless flux Fn = Ftot/ρc3

s
at z/d =−0.45 in the initial non-convecting state. Diagnostic quantities include the Reynolds
(Re = urms/νk1) and Péclet number (Pe = urms/χSGSk1 = PrSGSRe), and the global Coriolis
number Co = 2Ω/(urmsk1), where urms is the volume-averaged rms-velocity, and k1 = 2π/d is
an estimate of the scale of the largest eddies. A more detailed description of the model is given
in Käpylä (2023a).

Three main sets of runs (Sets A, B, and C) were made where Co was varied between 0 and
about 17. The imposed flux Fn was varied between the sets to study the scaling of dynamical
quantities with respect to it. The diffusivities were varied proportional to F

1/3
n to achieve

the same Re, Pe, and Co in each set (cf. Käpylä et al. 2020, for more details). The primary
difference between the sets is that the Mach number Ma = urms/cs, where cs is the sound
speed, and therefore relative stability of the radiative layer below the convection zone vary. In
Sets A to C, Re = Pe ≈ 30 . . . 40 and PrSGS = 1. A subset of Set A, denoted as Set Am, was
repeated at a higher resolution (5763 instead of 2883 grid points), and correspondingly higher
values of Reynolds and Péclet numbers (Re = Pe ≈ 65 . . . 84), while keeping Ra⋆F fixed.

3. Rotational scaling of convection
In Käpylä (2023a) the scaling of various quantities in rotating convection were studied.

The numerical results were compared with scalings derived for slow rotation where a bal-
ance between inertial and buoyancy forces is assumed and for rapid rotation where a balance
between Coriolis, inertial, and Archimedean (buoyancy) forces, or the CIA balance (e.g.
Stevenson 1979; Barker et al. 2014; Aurnou et al. 2020), is assumed. For the dominant
convective scale this leads to:

ℓconv ∼ Hp (slow rotation), and ℓconv ∼ HpCo−1/2 (rapid rotation). (6)

Similarly, the scalings for the convective velocity are:

uconv ∼ u⋆ (slow rotation), and uconv ∼ u⋆Co−1/6 (rapid rotation). (7)

Finally, the local Coriolis number Coℓ = 2Ωℓconv/uconv, can be shown to depend on Ra⋆F:

Coℓ ∼ (Ra⋆F)
−1/3 (slow rotation), and Coℓ ∼ (Ra⋆F)

−1/5 (rapid rotation). (8)

Here the convective length scale is estimated from the power spectrum of velocity, E(k), for
which uuu2 =

∫
E(k)dk, either by taking the wavenumber where the power has its maximum
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Figure 1. Mean (kmean) and peak (kmax) wavenumbers from power spectra of velocity as a function of Co
from simulations Set A from Käpylä (2023a). Data taken near the surface of the convectively unstable layer
at z/d = 0.85. The dotted line shows the Co1/2 prediction from the CIA balance. The blue vertical dotted
line indicates the solar value of CoF. The tildes indicate normalization by kH.

(kmax) or the mean wavenumber kmean =
∫

kE(k)dk/
∫

E(k)dk. The length scales ℓmax and
ℓmean are given by ℓmax,mean = Lx/k̃max,mean, where k̃max,mean = kmax,mean/kH, and where kH =
2π/Lx = π/2d is the wavenumber corresponding to the horizontal extent of the simulation
domain. Figure 1 shows k̃max and k̃mean from Set A. For slow rotation (Co <∼ 1) both k̃max and
k̃mean are approximately constant, although the former is already consistent with the Co1/2

scaling due to the large error estimates which are taken to be the standard deviation of the
mean values calculated from several snapshots. For rapid rotation the Co1/2 scaling from the
CIA balance is recovered for both k̃max and k̃mean.

The case that the deep parts of the solar convection zone is strongly rotationally constrained
has been discussed recently by Featherstone and Hindman (2016) and Vasil et al. (2021). Both
of these studies argue that the maximum horizontal scale of convection is reduced by rotation in
the deep parts of the convection zone, such that the largest convectively driven scale coincides
with supergranules (20–30 Mm) at a spherical harmonic degree ℓ≈ 100. Using Eq. (4) it is
possible to compute CoF at the base of the solar convection zone with Ω⊙ = 2.7 · 10−6 s−1,
H⊙

p ≈ 5 · 107 m, ρ⊙ ≈ 200 kg m−3, and F⊙
tot = L⊙/(4πr2

bot), where L⊙ = 3.83 · 1026 W, and
rbot = 0.7R⊙, gives Co⊙F ≈ 3.1. On the other hand,

Co =
u⋆

urms

CoF

k1Hp
. (9)

For the current slowly rotating simulations in Sets A to C, u⋆/urms ≈ 0.87 (see, Figure 2),
and (k1Hp)

−1 ≈ 0.32, such that the solar CoF is achieved in a simulation with Co ≈ 0.87.
Inspection of Figure 1 suggests that the Sun is somewhere in between the weakly rotationally
influenced and the rotationally constrained regimes.

The dominant convective scale in a simulation with Co ≈ 0.83 and CoF = 3.1 is again esti-
mated from the power spectrum of the velocity. In this case the maximum power occurs at
wavenumber k̃max = 3 and the mean wavenumber is k̃mean = 7, corresponding to length scales
ℓmax = 1.33d and ℓmean = 0.57d. The pressure scale height at the base of of the convective
layer in this run is Hp = 0.49d. Assuming the simulations to represent the deep parts of the
convection zone at the interface to the radiative layer, the pressure scale height corresponds to
H⊙

p ≈ 5 · 107 m. This leads to ℓmax ≈ 135 Mm and ℓmean ≈ 58 Mm, respectively. These results
seem to refute the idea that rotationally constrained convection can explain the supergranular
scale as the largest convectively driven scale. Furthermore, Käpylä (2023a) showed that in the
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Figure 2. Volume-averaged rms-velocity as a function of Co from simulations in Sets A, B, C, and Am from
Käpylä (2023a). The dotted lines are either constant (for Co ≤ 1.5) or proportional to Co−1/6 (for Co ≥ 6).
The inset shows Coℓ as a function of Ra⋆F for the same runs with power laws proportional to (Ra⋆F)

−1/5

for fast and (Ra⋆F)
−1/3 for slow rotation corresponding to Ra⋆F ≤ 3 · 10−3 and Ra⋆F ≥ 0.03, respectively. The

blue dotted vertical lines indicate the solar values of Co and Ra⋆F, respectively.

simulations of Featherstone and Hindman (2016), where the supergranular scale is the domi-
nant scale correspond to a value of CoF that requires a rotation rate which is at least 15 times
higher than in the Sun.

Figure 2 shows the time and volume-averaged rms-velocity from Sets A, B, C, and Am
normalized by u⋆. The scalings for slow and rapid rotation from Eq. (7) are recovered for Co <∼
1.5 and Co >∼ 6, respectively. For Co exceeding the maximum values here (Co ≈ 17), the flow
begins to develop a large-scale vortical component (see also Chan 2007; Käpylä et al. 2011)
which is likely due to two-dimensionalization of turbulence, and extending the calculations to
higher Co becomes challenging. Finally, the local Coriolis number Coℓ is shown in the inset
of Figure 2. Coℓ adheres to the scalings given in Eq. (8) with respect to Ra⋆F for both slowly
and rapidly rotating regimes.

4. Deardorff layer as a function of rotation
In the canonical models of stellar convection relying on mixing length theory (e.g. Böhm-

Vitense 1958), the whole convection zone is unstably stratified and convection is thought to be
driven locally by a superadiabatic temperature gradient

∆∇ = ∇ − ∇ad =− 1
Hp

ds
dz

> 0, (10)

where ∇ = d ln T/d ln p is the logarithmic temperature gradient, ∇ad = (d ln T/d ln p)ad = 1 −
1/γ is the corresponding adiabatic gradient, and where γ = cP/cV. If this were the case in
the Sun, giant cell convection on the scale of 200 Mm is expected to be prominent. This
is not observed in the Sun and 3D hydrodynamic simulations suggest that the deep parts of
convective layers are often weakly subadiabatic (e.g. Roxburgh and Simmons 1993; Tremblay
et al. 2015; Käpylä et al. 2017; Hotta 2017). This is thought to be due to the inherently non-
local nature of convection which is driven by cooling near the surface instead of heating from
the base as has been shown, e.g., in Käpylä et al. (2017).

This subadiabatic but convecting layer is referred to as the Deardorff zone (DZ), and it is
characterised by ∆∇ < 0 and Fconv > 0, where

Fconv = Fenth + Fkin = cP(ρuz)′T ′ + 1
2 ρuuu2uz, (11)
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Figure 3. Left panel: Horizontally averaged energy fluxes from the non-rotating Run A0 from Käpylä
(2023a). Grey (orange) areas indicate mixed (radiative) layers, and the red circles highlight the boundaries
between the layers. The various zones are characterised as F rad ≈ Ftot (radiative; RZ), Fconv < 0, F rad > Ftot
(overshoot; OZ), Fconv > 0, ∆∇ < 0 (Deardorff; DZ), and Fconv > 0, ∆∇ > 0 (buoyancy; BZ). Right: Depth
of the Deardorff layer (dDZ) as a function of Co from simulations in Sets A (black solid line), B (blue
dashed), and C (red dotted). The blue dotted vertical line indicates the value of Co corresponding to the
solar CoF. Adapted from Käpylä (2023a).

is the total convected flux (e.g. Cattaneo et al. 1991), which is the sum of the time and horizon-
tal averages of the enthalpy and kinetic energy fluxes, and where the primes denote deviations
from the horizontal average. The left panel of Figure 3 shows the flux balance from a non-
rotating Run A0 from Käpylä (2023a), where in addition to Fconv, Fenth, and Fkin, also the
radiative (F rad =−KdT/dz) and cooling (Fcool =−

∫
C dz) fluxes, as well as a quantity pro-

portional to ∆∇ are shown for reference. The DZ in this run is over 40 per cent of the pressure
scale height at the base of the convection zone which is here defined as the lower boundary
of the DZ. For the run closest to the solar value of CoF, dDZ ≈ 0.3Hp which corresponds to
15 Mm in the Sun.

Figure 3 shows dDZ as a fraction of the pressure scale height at the base of the convection
zone as a function of rotation for Sets A, B, and C from Käpylä (2023a). The sets differ from
each other in that the input energy flux is varied such that between the extreme cases (Sets A
and C), Fn decreases by factor of five. This has implications for the Mach number and also
for the overshooting below the convection zone (e.g. Käpylä 2019). However, the depth of the
DZ is virtually unaffected by the change of Fn. This is because the cooling time at the surface
is varied inversely proportional to Fn such that the thermal forcing remains unaffected.

5. Effects of surface forcing
There are some a few into the effects of varying surface forcing using convection simula-

tions. For example, Cossette and Rast (2016) varied the superadiabatic gradient at the surface
and found that it had a substantial effect on the convective length scale and deep convection
zone dynamics. On the other hand, Hotta et al. (2019) found only a weak influence of the
surface in a simulation that encompassed nominally the entire convection zone of the Sun.

Here a similar approach as in Cossette and Rast (2016) is explored with a simulation set-up
that was used in Käpylä et al. (2017). In distinction to the simulations discussed above, the
upper cooling layer is replaced by an imposed entropy gradient at the upper boundary, and
the z-coordinate runs between −0.5 ≤ z/d ≤ 1 such that the transition between the initially
isentropic and radiative layers is at z = 0. Furthermore, the SGS diffusion term has an extra
term proportional to the mean entropy gradient:

FFFSGS =−(χSGSρT ∇∇∇s′ + χ
m
SGSρT ∇∇∇s), (12)

where χm
SGS is non-zero only above z/d = 0.95, such that the second term on the rhs of Eq. (12)

transports the heat flux through the upper boundary. Here PrSGS = 1 and Prm
SGS = ν/χm

SGS =
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Figure 4. Left panel: Absolute value of the superadiabatic temperature gradient ∆∇ for Runs G[1-4]. Red
(blue) parts of the curves indicate regions where ∆∇ > 0 (∆∇ < 0). The black vertical lines denote the
bottom of the convectively mixed layer. The inset shows the depth of the mixed zone d̃mix = dmix/d as a
function ∇max

D . Right: depth of the Deardorff zone, d̃DZ = dDZ/d as a function of |∇̃s|. The inset shows the
relative fraction of the Deardorff zone of the mixed zone as a function of |∇̃s|.

0.5. In Käpylä et al. (2017), the entropy gradient at the surface was fixed to ∇̃s = (d/cP)(eeez ···
∇∇∇s) =−10. Here four values between −1 and −10 for ∇̃s are explored in Set G. In distinction
to Cossette and Rast (2016) where a spatially fixed Newtonian cooling term was used which
does not allow the depth of the convection zone to change appreciably, the current simulations
use Kramers opacity law which enables this.

In the absence of convection the hydrostatic solution with the Kramers opacity law is con-
vectively unstable only in a shallow surface layer (e.g. Barekat and Brandenburg 2014; Käpylä
2023a). This solution is modified by the onset of convection and the final outcome is expected
to be sensitive to the surface physics. Decreasing |∇̃s| leads to a shallower convection zone as
can be seen from the left panel of Figure 4. Furthermore, ∆∇ near the surface decreases and
the surface temperature increases. In the updated mixing length model of Brandenburg (2016),
the enthalpy flux was quantified in terms of gradient (FG) and non-gradient (FD) contributions

Fenth = FG + FD =−τρT ( 1
3 u2

rms∇zs + s′2g/cP) =
1
3 ρcPT (τu2

rms/Hp)(∆∇ + ∇D), (13)

where τ is a relaxation time, and where the magnitude of the non-gradient is characterised by

∇D = (3/γ)(s′2/c2
P)Ma−2. (14)

Brandenburg (2016) argued that ∇D in deeper parts is proportional to its maximum value near
the surface, ∇max

D . The depth of the mixed layer dmix, consisting of the buoyancy, Deardorff,
and overshoot zones, is shown as a function of ∇max

D in the inset of the left panel of Figure 4 for
the runs in Set G. While dmix increases monotonically with ∇max

D (corresponding to increas-
ing |∇̃s|), there appears to be no straightforward relation between the two. The depth of
the Deardorff zone is not very sensitive to |∇̃s|, although its size relative to the mixed zone
decreases somewhat as |∇̃s| increases; see the inset of the right panel of Figure 4.

6. Conclusions
Several ways to address the “convective conundrum,” or the discrepancy between convec-

tive velocity amplitudes in simulations and solar observations, were reviewed based on results
from recent hydrodynamic Cartesian convection simulations. First the effects of rotation from
Käpylä (2023a) were considered. These results suggest that the convective scale in the deep
convection zone of the Sun is not sufficiently affected by rotation to reduce the largest con-
vectively driven scale to the supergranular scale of 20-30 Mm as has been conjectured earlier
(Featherstone and Hindman 2016; Vasil et al. 2021). These simulations also suggest that the
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depth of the convective but formally stably stratified Deardorff zone is reduced as rotation
increases, but that a substantial subadiabatic layer of about 15 Mm is still expected to be found
at the base of the solar convection zone. Scaling laws of several dynamical quantities such as
convective scale, velocity amplitude, and local Coriolis number were shown to follow scalings
derived under the CIA balance (e.g. Stevenson 1979; Barker et al. 2014; Aurnou et al. 2020).

The effects of surface forcing were explored with a set of new simulations where the entropy
gradient at the surface was imposed similarly as in Käpylä et al. (2017). Unlike in the previous
studies in the literature that study the effects of the surface for the deep convection zone, the
current simulations allow the depth of the convective layer to vary self-consistently. These
preliminary results show that stronger surface forcing, in terms of a steeper entropy gradient,
leads to a deeper convectively mixed layer. Although there is a monotonic dependence between
the imposed entropy gradient and the depth of the convective layer, no clear relation between
the two can be identified. However, the fraction of the Deardorff layer of the total depth of the
convectively mixed layer decreases somewhat when the surface forcing is increased.

The results quoted above come with the caveat that the surface forcing of convection
in the current simulations is assumed to be accurately modelled. This, however, cannot
be guaranteed, and it is likely that much smaller scales need to be resolved to capture the
effects of radiative cooling in the photosphere accurately (e.g. Kupka and Muthsam 2017).
Furthermore, the effects of astrophysically relevant low Prandtl numbers (e.g. Spiegel 1962;
Käpylä 2021) and vigorous magnetism (e.g. Hotta et al. 2022) are also likely to play important
roles for solar and stellar convection.
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